Confidential LLMs

5 min read
Confidential LLMs

Confidential LLMs: Privacy-Preserving Large Language Models in Production

TL;DR: GPU Trusted Execution Environments (TEE) enable confidential LLM deployment with cryptographic privacy guarantees. NVIDIA H100/H200 Confidential Computing delivers 95-99% of native performance while protecting model weights, training data, and inference inputs. Deploy on Phala Confidential AI Cloud to eliminate the trade-off between AI capability and privacy with public attestation.

Executive Summary

The LLM Privacy Challenge:

  • Large language models process sensitive data (customer support, healthcare, legal, financial)
  • Traditional deployment exposes data to cloud provider, model operator, infrastructure admins
  • Privacy concerns limit AI adoption: 73% of enterprises cite data security as barrier (Gartner 2024)
  • Model IP protection critical: Proprietary model weights worth $50M+ for leading LLMs

The Confidential LLM Solution:

  • GPU TEE protects entire inference/training pipeline
  • Hardware-enforced isolation: No privileged access to model or data in use
  • Remote attestation: Cryptographic proof of privacy protections
  • Production-ready performance: <5% overhead on NVIDIA H100/H200 TEE
  • Result: Enterprise AI deployment without privacy compromise

Key Benefits:

Deployment TypePrivacyComplianceModel ProtectionCustomer TrustUse Cases
Traditional LLMTrust-based (cloud access)Difficult (data exposure)Impossible (admin access)Low (no verification)Limited to non-sensitive data
Confidential LLMHardware-enforced (guaranteed)Simplified (HIPAA/PCI/GDPR)Strong (encrypted weights)High (public attestation)Healthcare, finance, legal, government

Understanding Confidential LLMs

What Makes an LLM “Confidential”?

Core requirements:

  1. Model weight protection - Proprietary model parameters protected from unauthorized access
  2. Input privacy - User prompts never exposed in plaintext
  3. Output confidentiality - Generated responses protected until delivery to authorized recipient
  4. Training data protection - Fine-tuning datasets encrypted during training
  5. Verifiable privacy - Remote attestation proves protections are active
  6. No privileged access - Even infrastructure admins cannot access data/model

GPU TEE for LLMs

Why GPUs require TEE:

  • Modern LLMs require massive compute and memory resources.
  • Example: Llama 3.1 405B with 405 billion parameters needs ~810GB memory and 52 trillion FLOPS/token.
  • Solution: Multi-GPU with TEE using 8x NVIDIA H200 for 1.1TB total memory, achieving 95-99% of native performance.

NVIDIA H100/H200 Confidential Computing:

  • Hardware encryption: AES-256 for all GPU memory (VRAM, HBM3e)
  • Attestation: Cryptographic proof of TEE configuration
  • Performance: 95-99% of native throughput (overhead <5%)
  • Scale: Multi-GPU TEE (8x H100/H200 for 405B+ models)
  • Availability: Phala Cloud (production), Azure (pilot), AWS (2026 roadmap)

The Confidential LLM Stack

## Layer 1: Hardware (NVIDIA H100/H200 TEE)
├─ GPU memory encryption (AES-256)
├─ Secure boot and attestation
├─ NVLink TEE (protected multi-GPU)
└─ Hardware-enforced isolation

## Layer 2: Runtime (Phala Cloud Infrastructure)
├─ TEE initialization and verification
├─ Encrypted model loading
├─ Secure inference orchestration
└─ Attestation generation

## Layer 3: Model Deployment ([Dstack SDK](https://phala.com/dstack))
├─ Containerized model deployment
├─ Automatic TEE configuration
├─ Attestation publication
└─ API endpoint management

## Layer 4: Application Integration
├─ Client libraries (Python, JavaScript, REST)
├─ Attestation verification
├─ End-to-end encryption
└─ Usage monitoring

## Result: Complete privacy stack from hardware to application

Confidential LLM Inference

Architecture Overview

Production Deployment Pattern:

Confidential LLM Inference Flow:

Key Security Properties:

  1. Client sends encrypted request → API endpoint (TLS)
  2. Request enters GPU TEE (H100/H200)
  3. Decryption happens ONLY inside GPU TEE
  4. Model inference in encrypted memory (VRAM)
  5. Response encrypted before leaving TEE
  6. Continuous attestation verification proves TEE integrity

Implementation Example:

from dstack import DstackClient
import requests

class ConfidentialLLM:
    def __init__(self, api_endpoint: str):
        self.endpoint = api_endpoint
        self.dstack = DstackClient()
        attestation = self.dstack.get_attestation(api_endpoint)
        if not self.verify_attestation(attestation):
            raise Exception("TEE attestation verification failed")

    def verify_attestation(self, attestation: dict) -> bool:
        return self.dstack.verify_remote_attestation(
            attestation,
            expected_tee_type="nvidia_h100_cc",
            expected_model_hash="sha256:abc123...",
            min_trust_level="high"
        )

    def generate(self, prompt: str, max_tokens: int = 100) -> str:
        response = requests.post(
            f"{self.endpoint}/generate",
            json={"prompt": prompt, "max_tokens": max_tokens, "temperature": 0.7},
            verify=True
        )
        return response.json()["text"]

llm = ConfidentialLLM("https://my-confidential-llm.phala.cloud")
result = llm.generate("Patient presents with chest pain. Analysis:")

Deployment: Step-by-Step

Deploying Llama 3.1 70B on [Phala Confidential AI Cloud](https://docs.phala.com/phala-cloud/getting-started/overview) (GPU TEE):

from dstack_sdk import PhalaCloud

phala = PhalaCloud(api_key="your_api_key")
deployment = phala.deploy_llm(
    model_name="llama-3.1-70b-instruct",
    model_source="huggingface",
    gpu_type="h100_tee",
    gpu_count=4,
    memory_per_gpu="80GB",
    confidential_computing=True,
    attestation_public=True,
    max_batch_size=16,
    max_sequence_length=8192,
    dtype="bfloat16",
    min_replicas=2,
    max_replicas=10,
    autoscaling_metric="requests_per_second",
    autoscaling_target=100
)
print(f"Deployment ID: {deployment.id}")
print(f"API Endpoint: {deployment.endpoint}")
print(f"Attestation URL: {deployment.attestation_url}")

Step 2: Verify deployment and attestation:

attestation = phala.get_attestation(deployment.id)
print(f"TEE Type: {attestation['tee_type']}")
print(f"GPU Count: {attestation['gpu_count']}")
print(f"Model Hash: {attestation['model_hash']}")
print(f"Trust Level: {attestation['trust_level']}")

Step 3: Production inference:

import openai

openai.api_base = deployment.endpoint
openai.api_key = "your_deployment_key"

response = openai.ChatCompletion.create(
    model="llama-3.1-70b-instruct",
    messages=[
        {"role": "system", "content": "You are a medical AI assistant. Patient data is confidential."},
        {"role": "user", "content": "Patient: 45F, diabetes, presents with severe headache. Differential diagnosis?"}
    ],
    max_tokens=500
)
print(response.choices[0].message.content)

Conclusion

Key Takeaways

Confidential LLMs enable previously impossible deployments:

  1. Healthcare AI: Process patient data with HIPAA compliance
  2. Financial AI: Protect proprietary trading models in cloud
  3. Legal AI: Maintain attorney-client privilege with TEE isolation
  4. Government AI: Classified intelligence analysis in secure cloud
  5. Enterprise AI: Customer data analytics with privacy guarantees

Technology readiness (2025):

  • GPU TEE production-ready (NVIDIA H100/H200)
  • Performance overhead: <5%
  • Deployment simplified (Dstack SDK)
  • Public attestation enables verification
  • Market adoption accelerating

Bottom line: Confidential computing resolves the AI privacy paradox. Hardware-enforced protection enables deployment of powerful AI on sensitive data without privacy compromise. 2025 marks the transition from “too risky to deploy” to “how fast can we deploy?”


Next Steps

Recent Articles

Related Articles